e

Team sdmay20_47
Kenneth Lange, Alain Njipwo, Daniil Olshanskyi,

Cy

Luke Bell, Max Medberry

Client and advisor: Dr. Ali Jannesari

&

/

Functional requirements

% Incorporate information about old iterations of the project
received from the client

require an operator

Project idea

% Set up a simulation environment to test the software.
% Implement object detection and compute the volumetric

/Problem and motivation

Everything is being automated
Calculating powers are available and small
Neural networks do great and picture analysis
Stereo cameras can give precise depth images
Drones are a widespread and powerful tool but

e Put computation powers ON the drone
analysis e Make the computer drive the drone
% The hardware will be Master-Slave oriented so that new e Make it autonomous
hardware can be added and removed as desired in the e Allow complex object analysis algorithms (like
future volumetric analysis)
% Assemble the drone itself

Figure 1: Volumetric
Analysis

Figure 2: Autonomously

Follow Target

4

% The onboard computer should be able to control the

drone movements based on pictures camera takes

Operation environment

\/

% Drone will be operated outdoors and indoors

Non-functional requirements - i) UnrealEngine

% All software should store logs of tg past important DeSlgn Sl(etCh £ stereo Sl i Simulati k
,) - RLA should operate on el commands imulation
information and crash reports either real camera images or - F > environment

< Software will have an architecture that is easy to simulated ones (transformed PyZed | | stereo image Stereo images (virtual (=inreal. Engineid)
understand and navigate to the same format) AP (humpy array) camera on the simulated

% Code will be well documented, both via comments and a - Commands produced by call } drone)
wiki explaining to future users what is being accessed by RIA are of the same format e B) AirSim
what and how (AirSim commands) Learning commands ﬁ Sim

% C(Code will be modular, so it is easy to fix, extend, and/or => RC controller should be able Algorithm | — AP
replace to intervene as a fail safe h > re':pl)rc?rlwz]es AirSim - ~ MavLink - —rw——

< Open source software will be used to make the process measure + image SorTEeE S T SOMTEREE (igroanvé
cheaper and more maintainable using the help of an open from the Arsim | /‘ MavLink | controller) |
source community simulation responses responses

\/

< User may not be an experience drone pilot

\/

< Wind may be present

Intended users

\/

% Industry and farms (volumetric analysis)

\/

< Bloggers (drone-companion)

\/

% Police (drone-seeker)
“ Extendable by other developers

/Hardware Standards:

e PX4 flight stack and ArduPilot
e CAN
e MavLink protocol

Software Practices/Standards:

4

N

e AirSim API|
e Client-server
e ROS

/Software Testing:\

e Testing simulation flight
e Verifying dodging obstacles
e Ensuring distance from target

Hardware Testing:

RC control test Flights

Drone RC control test (no blades)
Sensor Calibration

Zed camera diagnostics test

Testing Strategies:

Functional Test System

System Testing

User Acceptance Test

Client Certification Environment

Testing
Environment:

Final component diagram

Images(pyzed)

ZedCamera

o

Rotors

) Jetson. Pixhawk powers rotors.

IControl commands

'

power
Jetson TX2
The drone
v e |
7 ~ Alrsim 7 ~ MavLink & ~
commands messages
RLA < » DroneServer < » Pixhawk controller
_) _ a _ y
AiIrSim o)
commands
DO‘.‘/'er
8 ~ 7 ~ 7 ~
power
. < > SSH € : DroneShell Battery
_ = _ = \. J
User Telemetry

8 ~

Compas/GPS

. Y, /
_ ey

f 3 - N

—>» RC recejver
_ J

Pilot with RC controller

Accelerometer/
Tilt sensor

e Ubuntu Titan Computer

(Simulation Environment)
e Howe Hall (Test Flights)

\

Technical details:

e (Can control drone from RLA, from
SSH, or from RC
e LiPo battery powers Pixhawk and

; \

etson powers ZED

e RLA getsimages from ZED camera,

processes them and decides which
AirSim calls to make

e Pixhawk firmware ensures stable

flight

Pixhawk responds to both RC

controller and whoever “listens” on

Jetson

-

